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Deissler,' i n  a study of weak, homogeneous turbulence i n  a uniform 

shear flow, reported calculat ions of several  components of the  f luc tua t ing  

ve loc i ty  cor re la t ion  u.u 

f o r  t h e  case of i n i t i a l l y  i so t ropic  turbulence. 

- 
and t h e  corresponding Fourier transform qij 1 J  

Triple  correlat ions i n  

t h e  analysis  of weak turbulence were neglected compared t o  double correla- 

t ions .  

The remaining components of t h e  ve loc i ty  cor re la t ion  are presented 

herein t o  enable a complete descr ipt ion of the r ed i s t r ibu t ion  of turbulent 

2 2  2 energy uiui among its d i rec t iona l  components ul, u2, and u3 by t h e  

e f f e c t s  of t he  mean-velocity gradient 

cays. 

and temperature-gradient e f f  ects3 i n  shear flows. 

- - -  - 

a = dTJl/dx2 as the  turbulence de- 

This information supplements recent repor t s  of pressure f luc tua t ions  2 

Analysis from reference 1 t h a t  r e l a t e s  t o  t.he present r e s u l t s  is  out- 

l i ned  as follows f o r  later discussion. In  wave-number space, t h e  transform 

of t h e  two-point ve loc i ty  correlat ion u . u '  s a t i s f i e s  (Eq.  (34) of r e f .  1) 
- 
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'R. G. Deissler,  Phys. Fluids,  4, 1 1 8 7  (1961) .  

2R. G. Deissler, Phys. Fluids,  5,  1124 (1962) .  

3R. G. Deissler,  Lnt. J. Heat Mass Transfer, 6, 257 (1963) .  
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where 8ij i s  1 fo r  i = j and 0 f o r  i # j ,  and 

A sca la r  dependence on K is subst i tuted f o r  t h e  vector dependence 
+ of rpij on K by in tegra t ion  over a sphere of radius  K, 

Similar integrat ion of t h e  terms of Eq. (1) yie lds  

where Pi ( dUl/dxz) represents production of turbulent  energy by t h e  act ion 

of t he  mean ve loc i ty  gradient,  and the last term provides viscous dissipa- 

t ion .  

Tij(dlJl/dxZ), but no contributions t o  

r = 0 t h a t  i s  considered here. A zero pressure-force term occurs i n  the 

contracted equation; t h a t  is, Qii(dUl/dx2) = 0 

Alterat ion of d is t r ibu t ions  i n  wave-number space i s  effected by 
- 
&.u./& 

1 J  
r e s u l t  f o r  the  case of 

-+ 

where summation i s  indi-  

cated by the  repeated index. Thus, the pressure-force terms &ij can be 

in te rpre ted  as exchanging energy between the  d i rec t iona l  components of 

energy but contributing nothing t o  a$ii/& ., 

A solut ion t o  Eq. (l), i n  a d d i t i o n  t o  'p22, y12, and 'pii from ref- 

erence 1, tha? satisfies ali i so t ropic  i n i t i a l  condition, 

(rp. .) = ( J0 /12nZ)(~26i j  - K . K . ) ,  1 J  
lJ 0 

( 5 )  

i s  
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J o{: K + [ K2 + a K  1 (t - t og2  + K;}~ 

12Yt 011 = 2 

2 2  kz + a K l ( t  - to)]. + K~ 2 K 2  K g  + 
+ .. (K: + KE)3’2X2 

1 K2 + a K l ( t  - t o )  - tan’ K2 

(K: + (K: + KZ,”” 

4- 

An exp l i c i t  form for ‘p33 

subtract ion as 

is  not shown here s ince it can be obtained by 

033 = ‘ P i i  - ‘P11 - 022’ ( 7 )  

Solutions for cp13 and 023,  although nonzero, are omitted since the  

corresponding ve loc i ty  correlat ions u1u3 and ~ 2 ~ 3  are zero, which 
- - 
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seems physically reasonable f r o m t h e  lack of ve loc i ty  gradients i n  t he  

xl, x3 and x2, x3 planes. It i s  in te res t ing  t h a t  913 and q-23 are 

a l s o  zero so t h a t  a zero average of ~ 1 3  and ~ 2 3  is  obtained over 

every sphere of radius  K.  

12 12 Dimensionless spec t ra  of 2 uI and u3 are displayed i n  Figs. 

1 and 2 i n  a temporally invariant representation. 

component of t he  energy-spectrum function 

By far the l a rges t  

1 J'ii = E, as shown i n  Fig. 1, 

I i s  formed by qll at  la rge  velocity gradients.  Energy production, t h e  

apparent cause of t h i s  e f f ec t ,  occur8 only i n  the  qll equation [second 

and t h i r d  terms i n  Eq. (l)] and outweighs t h e  t r ans fe r  of energy between 

components by t h e  pressure forces.  An in te rpre ta t ion  of these terms as 

production of energy i s  aided by changing t o  negative t h e  s ign of t he  

spectrum of 
- 
u1u2 t h a t  appears i n  Fig. 6 of reference 1 so  that agree- 

ment w i t h  Fig. 9 of reference 1 and the usual convention i s  at ta ined.  
- 

The reshaping of t h e  spec t ra l  d i s t r ibu t ion  of ug a t  large ve loc i ty  

gradients is shown i n  Fig. 2 by t h e  dashed-line d i s t r ibu t ion  corresponding 

t o  zero ve loc i ty  gradient but normalized t o  the peak of a large velocity- 

gradient d i s t r ibu t ion .  

On Fig. 3, Qll i s  shown t o  be always negative, indicat ing t h a t  
- 

pressure fc rces  t r ans fe r  energy out of t he  spectrum of uf at  a l l  wave 

numbers; conversely, Q33 is  posi t ive,  indicat ing t h a t  energy i s  t rans-  

fe r red  i n t o  the spectrum ug. 
- 

On the other hand, QZ2 is negative a t  

high wave numbers but pos i t ive  at low wave numbers i n  varying proportions, 

so  that the  net contribution t o  aq/& is  pos i t ive  at s m a l l  ve loc i ty  
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gradients but i s  negative a t  large gradients. Most of t h e  energy t rans-  

fer a t  high ve loc i ty  gradients by the  pressure terms is  from t h e  spectrum 
- - 

of u1 2 in to  t h e  spectrum of u3; 2 smaller t r ans fe r  is effected by QZ2. - - 
Curves of ul 2 and u3 2 t h a t  a r e  shown i n  Fig. 4 were obtained by 

in tegra t ing  t h e  spec t r a l  d i s t r ibu t ions  of Figs. 1 and 2. 

7 2 

r e s u l t s ,  u2 as a f r ac t ion  of uiui rises rap id ly  with increasing veloc- 

i t y  gradient. 

sure forces  are shown t o  t r ans fe r  more energy i n t o  ug than u$ a t  high 

ve loc i ty  gradients,  but a reverse e f fec t  at  low gradients  is  a l s o  shown 

A curve f o r  

A s  an t ic ipa ted  from t h e  spec t ra l  i s  reproduced from reference 1. - - 
1 

From t h e  spec t r a l  d i s t r ibu t ions ,  as w e l l  as Fig. 4, pres- 
- - 

- - 
i n  Fig. 4 where I..$ i s  greater  than u3. 2 

-- 
The shear cor re la t ion  coeff ic ient  ( U ~ U $ Y ’ ~  t h a t  i s  displayed 

i n  Fig. 4 i s  analogous t o  t h e  heat-transfer cor re la t ion  coeff ic ient  t h a t  

w a s  introduced by Corrsin4 and, for shear flows, was calculated by 

Deissler.3 After a rap id  r i se  f rom the  expected zero value for no- 

ve loc i ty  gradient,  t h e  shear coeff ic ient  i s  remarkably constant over a 

w i d e  range of gradients.  

*S. Corrsin, J. Appl. Phys., - 23, 113 (1952). 
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CAPTIONS 
- 12 Fig. 1 - Dimensionless spectra  of z u l  and uiui. 

Fig. 2 - Dimensionless spectra  of u2 - curve for  dUl/dxz = o 
2 3' 

- 

normalized at t h e  peak t o  t h e  curve for dUl/dx2 = 20. 

Fig. 3 - Spectral  pressure-force terms from Eq. (4). 

Fig. 4 - Velocity cor re la t ion  r a t i o s  as a function of dimensionless 
ve loc i ty  gradient. 
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F i g .  1 Dimensionless Spectra Of $ 7 and 4 .i.1 
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F i g .  3 Spectral pressure-force terms from Eq. ( 4 ) .  
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Fig. 4 Velocity correlation ratios as a function of dimensionless 
velocity gradient. 
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